
The multidimensional road to Harvard; or why

ranking schools does not make sense

Abstract

Most quantitative research methods impose an a priori structure on the results.
However, in a large number of cases, it may be of interest to researchers to discover
what type of structure seems to best represent the collected data. The purpose of this
paper is to present a new statistical method, KT-structures, and demonstrate i) how
it is readily applicable for management scholars and ii) how it can provide insights
not found on a priori -imposed structures. As a first application of KT-structures in
managerial settings, we show how to use the method on the Business Week ranking
of top US-based MBA programs. The resulting analysis shows that the structures
imposed by ranks (orders) cannot capture the multidimensionality of the space in
which Business Schools compete–even when restricting ourselves to the very few (12)
dimensions used by Business Week. We place our analysis on the larger literature of
critiques of School Rankings. Finally, we provide a tutorial on how researchers can
take advantage of this new model. We hope readers will receive this introduction
to KT-Structures with the recognition that this is a promising innovative approach
that deserves to be admitted into our toolbox of research methods.
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1 Introduction

Business schools are regularly ranked by Business Week, The Economist, US
News & World Report, Fortune, Financial Times, the Wall Street Journal,
amongst many other organizations and periodicals. A rank is a mathematical
structure also known as an order : given two distinct entities �1 and �2, the
statement �1 ≺ �2 denotes that �1 precedes �2. The stated meaning in a school
ranking is that if school �1 precedes school �2, then, generally, �1 should be
preferred to �2 by prospective students, by faculty in search of job positions,
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by potential employers of alumni, and by other observers and stakeholders.
An order brought by a ranking projects schools into a unidimensional, math-
ematically transitive space, in which there can be no ambiguity, circularity,
or niches. Is this unidimensional, transitive, space the best domain to project
business schools?

Consider, for the sake of argument, the imaginary land of Simplicia. In Sim-
plicia, there are four business schools. Two business schools, LE and LA,
are found at the island of Laputa—to borrow from Jonathan Swift—and are
deeply concerned with theoretical development and (quite literally) blue-sky
research. There is no concern with practicalities, hardly any focus at teach-
ing, and case studies and examples are explicitly prohibited. There is one
striking difference between schools LE and LA, though: LE is an expensive
school, while LA is an affordable school. There is absolutely no other differ-
ence between the schools: all professors, instalations and every other imag-
inable characteristic are exactly the same. The other two business schools,
RA and RE, are found in the land of Recordia–a land in which everything
must be recorded. These schools sharply focus on example after example, and
never attempt to find generalities, similarities, analogies, or models that join
characteristics or general ideas from even two individual examples from their
vast libraries. In Recordia, philosophy, mathematics, statistics, and metaphors
have been banned. At the start of the school year, a lottery selects one thou-
sand examples to be taught that year, with no logical sequence between them.
As in Laputa, the only difference between the schools is that RE is expensive
and RA is affordable.

Figure 1. Each of the four schools of Simplicia is related to two others by
one—and only one—of their dimensions.

What is the structure that relates the schools of Simplicia? There are at least
two equally plausible structures: a grid, or a ring. Note that, in this simplest
of examples, the ring and grid will have the same characteristics - but if we
add another school ou ’country’ their properties will then differentiate.

• A grid structure has two axis x, y in which entities differ—rather like price
versus quality, or height versus weight. In this case, the dimensions are (ob-
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viously) affordability-exclusivity and a fundamentalist focus on examples-
theoretical constructs.

• The ring structure is also suggests itself: note that, if one starts at any
school and moves in either the clockwise or counterclockwise direction, one
will rapidly find oneself at the beginning of the journey—rather like traveling
through different lattitudes will bring one back to the starting point.

The natural structure for the schools of Simplicia is either a grid or a ring.
One can, of course, project these schools into an order, creating a ranking
{�1, �2, �3, �4}. But that rank will not be its natural structure, as necessarily
there will be schools that are ranked next to each other while differing in all
dimensions. The rank can respect school similarity (following the ring), or it
can prioritize one dimension over another:

• If the rank follows the ring (clockwise or counterclockwise), the first school
�1 will share one crucial dimension with �4 (just as it will with �2)—but �1
will share no dimensions with �3, the third-ranked ’opposite’ school. Most
importantly, this happens regardless of how the rank is construed. In other
words, the first school will be significantly more similar to the last school
than to the penultimate school (which, inconsistently, will be one position
closer to the first in the ranking).

• If the rank prioritizes one dimension over another(i.e., following the grid
structure), schools �2 and �3 will not share dimensions but will be next
to each other in the rank. Students that strongly prefer school �2 but are
accepted only by �3 and �4 face a hard prospect, as �3 will not share any
dimension with their preference, while �4 will share one such dimension.
Should students go to �4 to satisfy one of their preferences? In this case,
they would risk the prejudice of the lowest ranked school in the whole of
Simplicia. Note that this occurs no matter which dimension is prioritized in
the ranking’s creation.

Our obvious proposition is this: Projection into a unidimentional domain loses
precious information—and similarity between schools can vanish. Schools can
be close to each other in the ranking, but far from each other in their true
nature. On the other hand, schools can be far from each other in the ranking,
and close to each other in their nature. Let us denote this phenomenon as a
rank anomaly.

This paper has two objectives. First, we would like to introduce to the Or-
ganizational and Administrative Science communities a new research method
that can be widely applied to analyze social, organizational, and economic
data. The second objective is to show the power of this method through the
analysis of the 2008 data of Business Week’s MBA program rankings. The
results obtained demonstrate rank anomalies in the published ranking—hence
providing new evidence for the critical literature of such rankings.
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Before engaging in the study of rankings, let us turn our attention to the more
general problem: the imposition of structure.

1.1 The imposition of structure

Structures are imposed by most analytical methods. Clustering methods will
always find disjoint sets in data. Ranking (or order-based) methods project
entities into a domain that must be isomorphic to either N, Z, or R. Decision
tree methods will create branchpoints to classify the data, etc.

Nature, on the other hand, is indifferent to our methods. Nature presents us
with a bewildering array of different forms and structures—as do societies,
firms, and other complex systems. If Darwin were to apply χ2 to living crea-
tures, he would find a ranking of life, not a tree of life suggesting a common
predecessor in the past and exploitation of niches in the future. Watson and
Crick would find it rather difficult to find the structure of DNA if restricted to
decision-tree methods. Humans find structures by studying data and carefully
comparing and contrasting this information to previously experienced struc-
tures (Linhares and Freitas 2010). Our analytical methods, however, impose
structures to data. This imposition can be harmful in a number of ways:

• It may suggest hypotheses which are not warranted. A ranking of living be-
ings, "the great chain of being", was the presumed structure until Linneaus
proposed the tree alternative (Kemp and Tenenbaum 2008); this "great
chain of being" hypothesis suggests that evolution will proceed towards
"greatness"; while the tree of life hypothesis suggests a common ancestor,
speciation, and the exploitation of niches.

• Moreover, the imposition of structures may blind us to important relations
hidden in the data. Prisioners generally self-organize into (ethnic) groups.
Clustering is able to capture the increased intra-group interaction that
dimensionality-reducing methods (such as χ2 or the use of z-values) can-
not. Ranking prisioners in order of "violent propensity", or guards in terms
of "abuse of power propensity", will create what we refer as rank anomalies
and will most likely neither reflect nor predict violence between individuals
in any meaningful way. One needs to know how individuals interact, not
how they rank in one dimension.

• Finally, the structures may simply be inconsistent with the data, as in the
case of rank anomalies in Simplicia. Do these anomalies appear in publicized
rankings? If so, can we detect them? As we will see below, in the "Top-30"
Business Schools of America (according to Business Week), the answer to
both questions is a resounding yes.

There is, however, no need to pressupose a form when analyzing data. A recent
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advance from cognitive scientists Charles Kemp and Joshua Tenenbaum (2008)
has enabled the automatic discovery of form. While Kemp and Tenenbaum are
mostly interested in their work as a cognitive theory, in this study, we present
their approach as a new analytical method, and we apply it to school rankings.

1.2 Business School rankings: a brief review of the literature

The publication of rankings for full-time and part-time MBA schools, begin-
ning in the 1980s, have generated high controversy in the U.S. Today, these
rankings exert deep influence over the business school market [5,7,8,3]. They
directly affect the perceptions of current students, alumni and prospective stu-
dents in regards to the quality of the ranked schools. All of these stakeholders,
including the faculty and staff, and even the Deans are affected by the publi-
cation of these rankings. Their influence has repercussions to the extent that
schools alter their curricula, fire faculty, and adapt teaching methods with the
explicit objective of rising in the ranks. Zell (2001) elaborates on this change
of behavior since the rise of the business school rankings. Pfeffer and Fong
(2004) explain how i) business schools taylor their curricula in attempts to
rise on the ranking. ii) teachers dumb down their courses in order to receive
better reviews from students, iii) the business press (not academia) has led the
way in defining standards of world-class business education and iv) the above
points cause an “isomorphism” in business schools which is detrimental both
to students (who lose options for different types of education) and schools.
Corley and Gioia [5] explain how “the rankings by these magazines have come
to dominate many business schools’ sense-making and action-taking efforts”.
Business Week, specifically, calculates a Return on Investment (ROI), in order
to measure to what extent alumni have achieved financial success, and how
quickly—a narrow focus arguably detrimental to the long-term perspective.

While students and alumni generally regard the rankings as a valid metric on
the quality and reputation of the schools, faculty and staff generally share a
much more averse view of the ranking system. In academia, they are viewed
as terrible indicators of the true quality of the education provided at an insti-
tution. Studies show that there is virtually no correlation between a position
in the ranking and academic production at institutions [6,10]. Other evidence
shows that both the rankings themselves [11] and the changes caused by them
[8,3] elicit responses ranging from mild annoyance to outright rebeliousness
amongst teachers and researchers. Despite that, there is strong empirical evi-
dence showing the correlation between these rankings and the resignations of
the deans of schools who score poorly on the rankings [4], as a testament to
their power and influence.

Dichev [13] questions the validity of rankings as a whole, concluding from a
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cross-rankings correlation that neither the Business Week nor the U.S. News
rankings “should be interpreted as a broad measure of school quality and
performance”, and that the “absence of positive correlation combined with
reversibility in changes implies that one should avoid a broad interpretation
of the rankings as measures of the unobservable ’school quality” ’. Still others
suggest alternate evaluation methods for schools, using different indicators
to provide a ’better’ ranking system (Tracy & Waldfogel, 1997) or better
principles (Cornelissen & Thorpe, 2002) in order to better reflect the qualities
of each institution. These, nevertheless, also impose the order structure.

From this evidence we can conclude that rankings hold a huge sway over
the institutions, their strategies and over the choices of students on where to
attend despite their clear dissociation from any true measure of the quality
of the education at each institution. If we can propose alternate methods
and metrics through which to evaluate these institutions, we may provide
alternatives to this fallacy of myopic comparisons.

We hereafter refer to the model we will use to compute structures as KT-
Structures (not to be confused with Hermitian structures, e.g., [1]). In the
next section we summarize Kemp and Tenenbaum’s mathematical model.

2 KT-Structures

Kemp and Tenembaum (2008) have developed a model which, through hierar-
chical Bayesian inference, can explore and discover the underlying form that
best adapts to a given dataset.

Discovering the underlying structure of a set of entities is a fundamental
challenge for scientists and children alike. Scientists may attempt to un-
derstand relationships between biological species or chemical elements, and
children may attempt to understand relationships between category labels
or the individuals in their social landscape, but both must solve problems at
two distinct levels. The higher-level problem is to discover the form of the
underlying structure. [...] the lower-level problem is to identify the instance
of this form that best explains the available data. (p. 10687)

Kemp and Tenenbaum (2008) provided, as a psychological theory, a method
for the unsupervised learning of form. This method can, moreover, be used
as a data analysis method. Statistical methods currently focus on the apli-
cation and optimization of a given structure to data, while presupposing a
specific underlying form: groupings (e.g., clustering), trees (e.g., hierarchical
clustering, minimum spanning tree), or spacial representations (e.g., multi-
dimensional scaling, self-organizing maps, PCA). That is, if one applies a
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clustering method to a set of data, one is assuming that clusters provide a
suitable form to analyse and understand the data. If one applies decision
trees, one is projecting that the data can be best understood as having no
cycles. Similarly, a school ranking projects schools into a unidimensional,
mathematically transitive, lens. The question we pose, therefore, is whether
that is the best form to analyse the data provided or to lead prospective
students to the optimal decision concerning a choice of schools.

There are two important ideas involved in their model: i) the use of a hierar-
chical Bayesian method to analyse data; and ii) the use of graph grammars and
graph redescriptions. Through simple operations based on graph-grammars
and inference, their algorithm is capable of exploring the space of possible
forms and their instances to find the best-fit representation of the provided
dataset. Let us look at each of these ideas in the following subsections.

2.1 Hierarchical Bayesian model: Forms, Structures, and Data

Hierarchical Bayesian models have been applied with promising results in a
wide variety of areas. Examples can be found in areas as diverse as marketing
(Abe, 2009), political science (Lock & Gelman, 2010), medicine (Lönnstedt
& Britton 2005), economics (Shimokawa et al. 2009) and artificial intelligence
(Damoulas & Girolami, 2009).

In Kemp and Tenenbaum’s model, starting from dataset D, the algorithm
attempts to find a form F and the structure S that best captures the relation-
ships in the dataset D. Input data may be expressed either as features and
elements or as triangular relational matrices, containing data about the rela-
tions between items to be explored. This cognitive aspect of discovery occurs
on different levels of abstraction concurrently. The possibilities are generated
via graph-grammar splits (see below) and the system seeks then to maximize
the posterior probability:

P (S, F |D) ∝ P (D|S)P (S|F )P (F )

That is, what is the probability of a form F and a structure S, given a dataset
D? In the hierarchical model, this probability is proportional to the product
of i) the probability of dataset D given structure S, ii) the probability of a
structure S given the form F , and iii) the probability of form F . Let us look
at each of the three probabilities of the right hand side in turn.

As pointed out above, there are many possible forms: trees, hierarchies, rings,
clusters, etc, and initially P (F ) is given by a uniform distribution over all
possible forms in the model.
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P (S|F ) is given by the number of structures compatible with a given form:

P (S|F ) ∝




θS

0
, i.e., if S is incompatible with F , then P (S|F ) = 0. Oth-

erwise it can be computed given additional info, such as the Stirling number
of the second kind and the number of k-cluster structures for a given form,
as described in Kemp and Tenenbaum (2008). Graphs with numerous clusters
are penalized through parameter θ.

We refer the interested reader to Kemp and Tenenbaum 2008 for the mathe-
matical details of P (S|F ) and for P (D|S), the probability of structure S given
prior dataset D, andfor further information on hierarchical Bayesian models
and their aplication in cognitive modeling we refer the reader to [24,25] Their
second important idea is the use of graph grammars to generate the forms and
structures reflecting the data.

2.2 Graphs and graph grammars

Graph theory provides a mathematical framework to understand objects and
their relations. One of the most interesting ideas brought forth by Kemp
and Tenenbaum was to define the hypothesis space through graph operations
and, through Bayesian inference, make use these simple operations to generate
a given structure as a possibile fit to the data presented. These generating
methods are graph grammars. A particular form (tree, ring, partition, etc.)
can be generated by simple operations in a graph, and by inferring which
operation is best suitable to a structure S and dataset D at a given point, one
can infer the underlying form F .

Graphs are powerful because they can represent any type of form and provide
any kind of structure onto which the data may be projected. Consider, for
example, graph grammars for trees and chains:

i) Trees: Suppose all objects are put in a single cluster, C1. A graph grammar
for trees will select a subset of these objects to put in a new cluster C2 them
from C1 to C2, and finally create a branch point B{C1,C2} that leads to C1 and
C2. The algorithm finds the best-split for the data at the current juncture,
uses that hipothesis.

ii) Chains: Suppose, once again, that all objects are put in a single initial
cluster C1. A graph grammar for chains will create a cluster C2, and split C2

from C1.

An interesting point concerning these generating processes is that the same
operation may also be used on subsequent clusters, i.e., not only on a starting
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cluster with all objects contained therein. This enables the ’splitting’ process
to continue until a final structure is reached. Also, items may eventually be
moved between clusters, if the model finds that this would create a structure
that is mnore adequate to the data.

Given this brief summary of KT-Structures, we may now proceed to apply the
model to the US Rankings of US-based MBA Programs.

3 The BusinessWeek 2008 Ranking

Our experiment computes KT-Structures of the BusinessWeek 2008 ranking.
The purpose is to compare and contrast the rankings widely used with the KT-
Structure. We computed all the 21 possible forms provided in the method, and
we concentrated attention to those that suggested rank anomalies. Of these,
the tree and hierarchy structures readily presented potential rank anomalies,
and we concentrate focus on them here.

3.1 Materials and Methods

We use the data provided in the Business Week 2008 MBA program ranking,
and we computed all possible KT-Structures. We ignored the values in the
fields "2006 Rank" and "2008 Rank", as we do not want to skew the results
towards those generated by Business Week—had we included such dimensions,
the correlation between ranking distance and KT-structure distance would be-
come artificially inflated. In the remaining dataset, there are 12 variables, and
nothing beyond those values is assumed to either exist or have any importance
(e.g., cities "do not exist": a student living in Bloomington IN has the exact
same experience of a student living in New York City—the data is simply
oblivious to this information). These dimensions are: graduate poll, corpo-
rate poll, intellectual capital, tuition and fees, pre-MBA pay, post-MBA pay,
selectivity, job offers, general management, analysis, teaching, and careers.
These last four dimensions ranged from A+ to C, and we changed these re-
sults to numerical values (A+, A, B, and C were translated to 1, 2, 3, and 4,
respectively).

Notice an important aspect here. The model does not know that an A-grade
is better than a C-grade, or that a higher post-MBA pay value is better than a
lower one. The method does not have any information concerning the meaning
of all these variables. But there are strong relations between the data: ranks
are provided by orders; tuition, fees and pay are determined by the market,
grades are obtained through Business Week’s polls, etc. The model is able to
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compute the structures based only on the underlying data, and does not need
to understand the meaning imbued in each dimension.

3.2 Numerical experiments

The most interesting computed form is a hierarchy (e.g., a type of tree); one of
which is presented in Figure 2. At a macro level, this form has some semblance
with the original ranking (Figure 3). The KT-Structure distance between two
schools (i, j) is measured by counting the number of edges from the origin
school’s cluster to the destination school. The rank distance, on the other
hand, is simply obtained by |Ri −Rj|, where Rk is the position of school k in
the rank. Note that the domains are quite distinct, as distances in the KT-
Structure tend to be smaller, yet, there is strong correlation between the rank
and the hierarchy (r = .65—and covariance is 8.34). This shows that—at a
large scale—there is some agreement between the rank and the KT-Structure.

The strinking characteristic of trees and hierarchies—as contrasted to rankings—
is the possibility of branchpoints. If the reader will allow a metaphor: given
the data, schools are better viewed as cities organized alongside a river then
as floors of a skyscraper. The glacier melts at the left side of the figure, with
the cluster comprising Harvard, Stanford and Wharton. As one moves down-
stream, the differentiating variable (at this point) is post-MBA pay: the first
cluster with three schools are the only ones over $120k, the second cluster with
values ranging from $105k (Chicago) to $116k (MIT). The cluster comprising
Michigan ($105k) and Duke ($100k) is followed by one comprising Cornell
($96k) and NYU ($95k). There are three schools downstream with post-MBA
pay of $100k or more (UCLA, Virginia, and CMU), but at this stage many
other variables become increasingly relevant, and the tree branches.

A small stream leads to Yale, Maryland, and Olin. A combination of relatively
undesirable data explains this cluster: the schools share "C"s in "general man-
agement" and "analysis" (and "B"s in "careers"), they are low-ranked in the
corporate poll (positions 33, 41, and 42), and they are relatively expensive.
These traits lead us to interesting distortions between this tree and the rank-
ings.
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Figure 2. The generated KT-Structure: an undirected hierarchy with no self-
links.

Figure 3. The KT-Structure distance between schools plotted against their
ranked distance.

As a demonstration of the explaining power of the KT-Structure, consider the
following example. Suppose a student preferred the University of Washington’s
Foster School (no. 27), but was rejected there and accepted by two schools:
Yale (no. 24) and Georgia Tech (no. 29). The student’s choice seems easy, as
Yale is no doubt better ranked.

The KT-Structure, however, tells a different story, placing Yale far from the
student’s preferred Foster. Here is why. If the student chooses Georgia Tech,
tuition costs drop slightly from Foster’s $64902 to Georgia Tech’s $64152–while
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Yale will charge $93098. If the student choses Georgia Tech, Foster’s "B" in
"general management" is also found in Georgia Tech–while Yale holds a "C".
If the student chooses Georgia Tech, Foster’s "B" in "analysis" is reflected by
an "A" in Georgia Tech’s grade–while Yale holds a "C". Georgia Tech, at the
28th position in the corporate poll, is much closer to the preferred Foster’s
26th position than Yale (33th position).

         
         
         
         
        

         
         
         
        

Table 1. Rank anomalies. Though schools ranked {22, 24, 26, 27, 28, and 29}
seem close in the ranking, they are clearly separatable into different clusters.

Of course, by choosing Yale over Georgia Tech, there are also significant gains–
moving, however, further away from the student’s preferred school characteris-
tics. The preferred school held the 30th position in the graduate poll; Georgia
Tech holds the 31st–but Yale is at the 19th position. In "intelectual capital",
the preferred school held the 29th position, while Georgia Tech holds the 26th
position—but Yale is number 10. In school selectivity (perhaps a minor con-
cern to our already accepted student), the preferred school accepts 30% of
applicants, Georgia Tech accepts 29%–while Yale is much more selective, at
14%.

Of the 12 dimensions considered in building the ranking, Yale differs signif-
icantly in 7 dimensions from both the student’s preferred school and from
Georgia Tech (and also from Brigham Young). This is why the KT-Structure
places schools like Maryland (26) close to Washington University’s Olin (28),
while both are far from the University of Washington’s Foster (27) and Geor-
gia Tech (29) (which also resemble each other in many dimensions). Instead of
differentiating them, the rank alternates between these two different groups,
obliterating their differences along the way.

To sum up: if the ontology of the world of MBAs consisted solely of the 12
dimensions included in the rankings, which is questionable, and if the collected
data were an absolutely perfect reflection of reality, which is also questionable,
and even if the aforementioned criticisms of rankings were all invalid, which
also happens to be questionable, this much is true: a student with a strong
preference for the no. 27th school would find that school no.29 is a better
match than school no.24. If, in an ideal world, popular publications provided
KT-Structures instead of rankings, there would be no cognitive dissonance in
choosing between a school that better reflects one’s true preferences versus
the "better ranked" one. (We in fact hypothesize that students facing these
choices would choose schools according to the KT-Structure more often than
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according to rank, though we have no way to test this at this point.) This
is the type of meaningful information which the KT-Structure brings to light
and which a simple rank ordering remains oblivious to.

Of course, analysis of the KT-Structure may also be valuable to faculty. When
a school decides to work on improving one of its many variables, it is try-
ing to break away from the current cluster and slowly move upstream. The
KT-Structure enables a comparison to other schools in the same cluster and,
moreover, highlights the differences between the clusters upstream. A school
can move faster if it knows exactly where it is located in this multidimensional
space, and sensitivity analysis can be conducted through small variations of
parameters. Rather like Nature, Business Schools non facit saltum 2 . There
are no sudden jumps here; as there are many multidimensional curves on the
road to Harvard 3 .

4 Summary

We introduce, to the organization science community, Kemp and Tenenbaum’s
model for finding structure in data. Instead of presenting it under the per-
spective of a psychological theory, our goal here is to describe it as a new
methodology for research. In our experiments, we have applied the method to
the data used to construct school rankings by Business Week (2008). We claim
the method provides insights into the multidimensional space in which schools
compete, and that the resulting KT-Structures better reflect the multi-faceted
reality of a business school education and are better representations than the
widely disseminated rankings.

Using the very same features used in constructing the rankings, the KT-
Structures bring to light the anomaly that schools may be next to each other
in the ranks while bearing few resemblances in their numerous dimensions.
Conversely, schools can be far in the ranks, but have a large set of similar
features. We therefore question the validity of school rankings: A rank is not
necessarily the most adequate form to represent (or understand) entities with
no dominance relation. Statistical and data mining methods often pressupose
a hidden structure, such as a cluster, a tree, or a ranking. The MBA program
rankings, however, impose a representational form that is unfit for the type
of information they hope to convey. This has sweeping implications to school

2 The current recession notwithstanding.
3 We use Harvard here not as an endorsement or any other judgement of value.
Because of its great wealth, history, faculty, alumni, and many honors, it can be
argued that Harvard University—and HBS—has become the "stereotypical world-
class" University.
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strategy, positioning, and, because of the wide impact of published rankings,
for prospective students and all stakeholders. One can only idealize a world
in which the structures that best reflect the data are widely disseminated for
public consumption.

Appendix. Applying KT-Structures: a tutorial for social scientists

In this appendix we provide a step-by-step tutorial, so that other researchers
may promptly apply their own datasets to this new method.

On the information-processing of the method

The method works by pressuposing initially that all entities (in our case,
schools) are contained in a single cluster. The method then, given a specified
form F and the dataset D, searches for the best structure that represents the
data. In the online supplement we present a video of the method’s convergence,
from a single all-encompassing cluster to a series of ’splits’ and re-adjustments.

Software Requirements

Kemp and Tenenbaum host their code and data sets at charleskemp.com/
code/ formdiscovery1.0.tar.gz. The code is written in the Matlab (Matrix
Laboratory) framework, which is proprietary software, though widely avail-
able. We are at this stage attempting to execute the code in the open-source
alternative, GNU Octave (www.gnu.org/software/octave/). We are also start-
ing a translation to JAVA. The code also has dependencies on the open-source
GraphViz package (graphviz.org/), an advanced package that enables numer-
ous functions for drawing all kinds of graphs and trees.

Tutorial

There are many steps that need to be taken in order to execute the method
in a new dataset. The following files must be configured:

File setps.m: This is one of the parameter configuration files. It has the vectors

ps.data = {’demo_chain_feat’, ’demo_ring_feat’,... ’demo_tree_feat’, ’demo_ring_rel_bin’,...

’demo_hierarchy_rel_bin’, ’demo_order_rel_freq’,... ’synthpartition’, ’synthchain’, ’synthring’,...
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’synthtree’, ’synthgrid’, ’animals’,... ’judges’, ’colors’, ’faces’, ’cities’,...

’mangabeys’,’bushcabinet’, ’kularing’,... ’prisoners’, ’schools’};

and

ps.dlocs = {[b, ’demo_chain_feat’], [b, ’demo_ring_feat’],...

[b, ’demo_tree_feat’], [b, ’demo_ring_rel_bin’],...

[b, ’demo_hierarchy_rel_bin’], [b, ’demo_order_rel_freq’],...

[b, ’synthpartition’], [b, ’synthchain’], [b, ’synthring’],...

[b, ’synthtree’], [b, ’synthgrid’], [b, ’animals’],...

[b, ’judges’], [b, ’colors’], [b, ’faces’], [b, ’cities’],...

[b, ’mangabeys’], [b, ’bushcabinet’], [b, ’kularing’],... [b, ’prisoners’], [b, ’schools’]};

The user must include the name of the new data file in both these vectors.
In our case, the inclusion in ps.data and in ps.dlocs is of the last entry,
’schools’, and also [b, ’schools’], correspondingly.

File setrunps.m: This file needs to be altered according to the nature of the
data. Is it feature data? Is it similarity data? Is it relational data?

File masterrun.m: this is the main program file. A number of small changes
must be made here. First, the directory path in which GraphViz is installed
must be set. For example, in a windows machine:

[s,w] = system(’C:\Program Files\Graphviz\bin\gvedit.exe’);

The following vectors also need to be changed:

thisstruct = [1,3,6];

and

thisdata = [1:5];

Note that the numbers here must reflect the positions given in the vector
ps.structures and ps.data (both found on file setps.m). In the above ex-
ample, the system will load the first five entries of ps.data, each at a time,
as input to search for structures, and it will search for the types of structures
in entries 1, 3, and 6 of ps.structures (which are ’partition’, ’order’,
and ’tree’).

Obviously, the data files must be in the \data subdirectory.

After these steps are complete, typing masterrun at the Matlab prompt will
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start the execution the program. We hope readers will receive this introduction
to KT-Structures with the recognition that this is a promising innovative
approach that deserves to be admitted into our toolbox of research methods.
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