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 Post-traumatic stress disorder and stress dysregulation in the female sex




ABSTRACT
Post-traumatic stress disorder (PTSD) is a psychological disorder that affects 2.8% of the general population in Argentina, presenting comorbidities with other pathologies, being more frequent in females than in males. This review makes an integration of theoretical and experimental studies regarding the neurophysiological bases of stress response regulation and PTSD, emphasizing the differences between sexes. Differences have been found in the volume and activity of various brain areas linked to the stress response between participants without pathology and those with other anxiety disorders. Greater activation and complexity in glucocorticoid (GC) hormones, and in the signaling and expression of corticotropin releasing factor (CRF) and its receptors; as well as a decrease in norepinephrine reuptake transporters (NET) were also found. These findings seem to be associated with a down- (dys-) regulation of the locus coeruleus - norepinephrine (LC-NE) system in the female sex, evidencing the presence of a biological vulnerability to stress increasing the risk of the development of psychiatric disorders. Further research in humans is sought in order to generate action and prevention plans.
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RESUMEN
El trastorno de estrés postraumático (TEPT) es un trastorno psicológico que afecta a un 2,8% de la población general argentina, presentando comorbilidades con otras patologías, siendo más frecuente en personas del sexo femenino que en el sexo masculino. Esta revisión realiza una integración de estudios teóricos y experimentales con respecto a las bases neurofisiológicas de la regulación de la respuesta de estrés y el TEPT, enfatizando en las diferencias entre sexos. Se han hallado diferencias en cuanto al volumen y actividad de diversas áreas cerebrales vinculadas a la respuesta de estrés entre sujetos sin patología y aquellos con otros trastornos de ansiedad. También se halló una mayor activación y complejidad en las hormonas glucocorticoide (GC), y en la señalización y expresión del CRF y sus receptores; así como una disminución de los transportadores de reabsorción de norepinefrina (NET). Estos hallazgos parecen estar asociados a una (des)regulación a la baja del sistema del locus coeruleus – norepinefrina (LC-NE) en el sexo femenino, evidenciando la presencia de una vulnerabilidad biológica al estrés aumentando el riesgo del desarrollo de trastornos psiquiátricos. Se procura realizar más investigaciones en humanos para poder generar planes de acción y prevención.
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Introduction

Post-traumatic stress disorder (PTSD) is a psychological disorder with a prevalence of 2.8% in the general Argentine population, with anxiety disorders being the most prevalent (16.4%) (Stagnaro et al., 2018). It is also a disorder that is more prevalent in females than in males (Kendler et al., 1995; Breslau et al., 1999; Stein & Steckler, 2010; Christiansen & Hansen, 2015; Kessler et al., 2017; Olff, 2017; Gogos et al., 2019). The Diagnostic and Statistical Manual of Mental Disorders 5th Edition (DSM-5) defines PTSD as a set of behavioral patterns and symptoms that are triggered by exposure to death, serious injury, or sexual violence (actual or threatened) (American Psychiatric Association [APA], 2014). These exposures can be the direct experience of the traumatic event(s), direct presence of the event occurring to others, knowledge that the event has occurred to a close family member or close friend (it must have been violent or accidental), and repeated or extreme exposure to repulsive details of the event. It is also characterized by the presence of intrusion symptoms associated with the event, beginning after the event (memories, dreams, dissociative reactions, psychological discomfort, physiological reactions); as well as persistent avoidance of stimuli associated with the event (memories, distressing thoughts or feelings, external reminders). In turn, there are negative cognitive and mood disturbances associated with the event (inability to remember an important aspect of the event, persistent negative beliefs about self and others, distorted perception of the cause or consequences of the event leading to assigning blame, persistent negative emotional state, decreased interest or participation in meaningful activities, feelings of detachment or estrangement from others and/or inability to experience positive emotions). At the same time, there is significant impairment of alertness and reactivity associated with the event (irritable behavior and angry outbursts, reckless or self-destructive behavior, hypervigilance, exaggerated startle response, concentration problems, and/or sleep disturbance) (APA, 2014).
Individuals exposed to childhood trauma show deficits in emotional regulation, reporting impaired interpersonal functioning, while presenting increased suicidal risk and unfavorable course of mood disorders (Mullen et al., 1996; Cloitre et al., 1997; Cloitre et al., 2005; Lanius et al., 2010; Maniglio, 2011; Nazarov et al., 2014; Coventry et al., 2020). PTSD has high comorbidity with multiple disorders, such as depression, generalized anxiety disorder, bipolar disorder, borderline personality disorder, psychosis, and substance abuse (Brady et al., 2000; Daruy-Filho et al., 2011; Lataster et al., 2011; Hovens et al., 2012; Jowett et al., 2020; Hawn et al., 2020). In turn, many of them have a higher correlation with the female sex than with the male sex, which would indicate a higher prevalence in that sex (Auerbach et al., 2018).
The neurophysiological correlates of PTSD have been studied since its incorporation in the DSM, associating it with increased activation of brain structures, as well as hypoactivation of others (Sherin & Nemeroff, 2022). These correlates have been extended to the functioning of hormones, such as glucocorticoids and corticotropin-releasing factor; neurotransmitters, such as norepinephrine (NE); and their receptors (Tolin & Foa, 2006; Bangasser, 2013; Bangasser et al., 2016; Sherin & Nemeroff, 2022). Thus, the aim of the present study was to provide an integrative look at the functioning of regulatory systems of stress response and PTSD in the female sex. 
Ethical considerations
This study was conducted in accordance with the Universal Declaration of Ethical Principles for Psychologists (IAAP & IUPsyS, 2008), the International Ethical Guidelines for Biomedical Research Involving Human Subjects (CIOMS, WHO & PAHO, 2016) and the declarations of the ISP regarding ethical behavior at the time of submission (ISP, 1978, 2008a, 2008b, 2014, 2016, 2018, 2019).
Brain regions
PTSD has been associated with different brain structures. In several studies, cases of patients with decreased amygdalar activity were reported, and almost no difference was found between the experimental and control groups (Britton et al., 2005; Bremner et al., 1999; Bremner et al., 2004; Lanius et al., 2001; Lanius et al., 2002; Lanius et al., 2003; Sakamoto et al., 2005; Shin et al., 1999; Yang et al., 2004). Hypoactivation in the dorsal and rostral anterior cingulate cortex and ventromedial prefrontal cortex (structures linked to experience and emotional regulation) has been found in patients with PTSD; compared to a group of patients with generalized anxiety disorders, social anxiety and specific phobia (Etkin & Wager, 2007; Girgenti et al., 2021). Hypoactivation of the medial prefrontal cortex, hyperactivity of the amygdala and abnormal functioning of the hippocampus, and also of regions outside the traditional fronto-limbic model have also been documented (Rauch et al., 1998; Rauch et al., 2006; Elzinga et al., 2002; Shalev et al., 2017; Liberzon & Abelson, 2016; Akiki et al., 2017; Patel et al., 2012; Hayes et al., 2012; Koch et al., 2016; Kamiya & Abe, 2019). The hippocampus plays a crucial role in the stress response, and it was found that the hippocampal volume is smaller in PTSD patients than the control group (although there are some contradictions in terms of hippocampal activity compared to the control group) (Sapolsky et al., 2000; Bremner et al., 1995; Gurvits et al., 1996; Kitayama et al., 2005; Smith et al., 2005; Karl et al., 2006; Bromis et al., 2018; Logue et al., 2018; O'Doherty et al., 2015; Kamiya & Abe, 2019). The same applies to the medial prefrontal cortex, its volume is smaller in patients with PTSD (Karl et al., 2006; Bromis et al., 2018; Kamiya & Abe, 2019). The amygdala is also a crucial structure in danger recognition and fear response; functional magnetic resonance imaging (fMRI) studies have evidenced higher amygdala activity in PTSD patients compared to the control group (although also with some contradictions in terms of amygdala volume) (Elzinga et al., 2002; Karl et al., 2006; Etkin & Wager, 2007; Woon & Hedges, 2009; Wang et al., 2010; Patel et al., 2012; Hayes et al., 2012; Kuo et al., 2012; Morey et al., 2012; Janak & Tye, 2015; O'Doherty et al., 2015; Koch et al., 2016; Liberzon & Abelson, 2016; Bromis et al., 2018; Logue et al., 2018; Postel et al., 2018; Quadrelli et al., 2018; Kamiya & Abe, 2019). Since studies about the volume and reactivity of various brain areas proved inconclusive, other factors incident to the stress response in the female sex, such as biological and neurochemical, were analyzed.
Hormones and neurotransmitters
	Several factors can be identified that may influence the triggering of PTSD, among the biological factors, differences between sexes have been found in several studies with rats and mice that correspond with findings in humans and with the prevalence of this disorder in the female sex (Liu et al., 2006a; Pooley et al., 2018a; Pooley et al., 2018b; Zhang et al., 2019). Among these findings, differences in the amount of receptors in glucocorticoid (GC) hormones, corticotropin-releasing factor (CRF) hormone, and NE have been elucidated between female and male individuals (McEwen, 1998; Sapolsky, 1996; Galea et al., 1997; Madeira et al., 1991; Madeira & Paula-Barbosa, 1993; Liu et al., 2006a; Borodovitsyna et al., 2018). 
Glucocorticoids (GC)
GC hormones influence the nervous system in several ways (Stein-Behrens & Sapolsky, 1992; Gallagher et al., 1996), and multiple stress-related disorders are related to chronic elevation of this hormone (such as PTSD) (Sapolsky, 1996), as this chronic elevation can modify or exacerbate neuronal changes. In a study conducted by Liu et al. (2006a), where mice of both sexes were subjected to corticosterone treatment, they investigated morphological changes between sexes in the hippocampus and showed that the intact group maintained the same corticosterone levels in both males and females; however, with an implanted pump, circulating corticosterone levels in females were at least twice as high as in males. In both the hippocampus and locus coeruleus (LC), the mean length of apical dendrites in females was 20% greater than in males, and the length of basal dendrites was 44% greater than in males; thus, increasing the amount of information received and producing greater activation of the emotional arousal circuitry in the female sex (Liu et al., 2006a; Labus et al., 2008; Bangasser et al., 2011). 
Corticotropin-releasing factor (CRF)
CRF plays a crucial role in the activation of the hypothalamus-pituitary-adrenal (HPA) axis, this occurs in the face of a stressful event when CRF is released from the hypothalamus and stimulates the secretion of adrenocorticotropic hormone (ACTH) (Vale et al., 1981; Boero et al., 2022). ACTH acts on the adrenal glands causing the release of glucocorticoids, and these return to the hypothalamus and pituitary to finalize the activation of the HPA axis (Dallman et al., 1987; Bangasser, 2013). CRF modulates a wide variety of cognitive and behavioral responses to stress, as it activates diverse areas of the brain in this response; acting on two types of receptors CRF1 and CRF2, which are found in regions that modulate stress, mood and anxiety (Chang et al., 1993; Chen et al., 1993; Smith & Vale, 2006). CRF1 activation initiates the endocrine response to stress and mediates anxiety-related behavior, whereas CRF1 antagonism reduces anxiety. On the other hand, CRF2 activation attenuates HPA axis activity, thus overriding the effect of CRF1 (Heinrichs et al., 1997; Contarino et al., 1999; Smith et al., 1998; Timpl et al., 1998; Takahashi, 2001; Bale & Vale, 2004; Holsboer & Ising, 2008; Hauger et al., 2009). Both dysregulation and high levels of CRF and its receptors are linked to some anxiety disorders and depression, being present in patients with PTSD; even several studies have identified single nucleotide polymorphisms in the CRF1 gene that are related to depression, panic disorder and PTSD (Nemeroff et al., 1991; Owens et al., 1991; Banki et al., 1992; De Bellis et al., 1993; Raadsheer et al., 1994; Heuser et al., 1998; Baker et al., 1999; Rusnák et al., 2001; Gold & Chrousos, 2002; Austin et al., 2003; Bissette et al., 2003; Sautter et al., 2003; Liu et al., 2006b; Keck et al., 2008; Wang et al., 2008; Wasserman et al., 2008; Polanczyk et al., 2009; Amstadter et al., 2011; Ishitobi et al., 2012).
As previously mentioned, psychiatric disorders related to CRF dysregulation are more prevalent in women, increasing the likelihood that sex differences are due to this disparity in the CRF system (Bangasser, 2013). Higher CRF expression has even been observed in the female sex in the paraventricular nucleus of the hypothalamus, amygdala, and bed nuclei of the stria terminalis (Iwasaki-Sekino et al., 2009; Sterrenburg et al., 2012; Bangasser et al., 2013). These differences could contribute to greater vulnerability to stress and suffering from anxiety disorders such as PTSD, which has been demonstrated through studies in mice (Bale et al., 2000; Bale & Vale, 2003; Sandi et al., 2008; Sztainberg et al., 2010). Sex differences were also found in CRF receptor binding in the amygdala, as it was significantly higher in some nuclei in female mice than in male mice, whereas male mice had higher CRF2 binding (Lim et al., 2005). These differences in CRF1 and CRF2 binding are likely due to gonadal hormone regulation (estrogen and progesterone) of CRF receptor number (Simerly et al., 1990; Auger & De Vries, 2002; Catalano et al., 2003; Parham et al., 2004; Weiser et al., 2008; Maejima et al., 2009; Zuloaga et al., 2012). In turn, there are differences in CRF1 signaling that may make neurons in the female sex more sensitive to CRF (Bangasser et al., 2010; Valentino et al., 2012; Bangasser & Valentino, 2012). CRF1 in the female sex binds to G proteins on a larger scale than in the male sex, and this binding along with consequent signaling could increase the anxiety response to stressful events in the female sex (Bangasser et al., 2010). Similar sex differences may occur in other G protein-coupled receptors and steroid hormone receptors (Gaub & Carlson, 1997; Ramtekkar et al., 2010).
Locus coeruleus - norepinephrine (LC-NE) system
Findings regarding the physiological response of LC neurons indicate that CRF activates noradrenergic neurons in this region (Page et al., 1993; Curtis et al., 1997; Valentino & Van Bockstaele, 2008; Snyder et al., 2011). Studies in rats have evidenced that LC neurons in female rats are much more sensitive to CRF than in males, thus having consequences for the stress response in the female sex (Curtis et al., 2006). Activation of the LC arousal system is often adaptive in promoting cognition and behavior aimed at coping with stress; however, its activation to subthreshold stimuli becomes inappropriate in females, given the sensitivity of LC neurons to CRF (Valentino & Van Bockstaele, 2005; Snyder et al., 2011). The LC regulates stress activation levels through the release of NE in the forebrain region, which may be due to mechanisms in which estrogen increases NE levels (by increasing synthesis and decreasing its degradation) and contributes to the hyperactivation of stress symptoms in females (Berridge & Waterhouse, 2003; Aston-Jones & Cohen, 2005). In fact, estradiol treatment increases NE levels in the hippocampus, cortex and hypothalamus (Alfinito et al., 2009; Lubbers et al., 2010). The LC of adult female rats is thought to be larger than in male rats because females have more NE neurons than males, which could affect the regulation of this structure in different brain regions (Guillamon et al., 1988; Luque et al., 1992; Pinos et al., 2001). The presence of ovarian hormones throughout development plays an important role, since LC neurogenesis continues during puberty in females, but not in males (Pinos et al., 2001). In the hypothalamus, NE levels change throughout the reproductive cycle of the rat such that they increase during the proestrus phase, when ovarian hormone levels are highest (Selmanoff et al., 1976; Ventura-Bort et al., 2018). This effect may be mediated by the LC, as well as by noradrenergic A1 and A2 cell clusters in the medulla that project densely to the hypothalamus (Aston-Jones, 2004). Estrogen can also regulate adrenergic receptors by shifting the balance of NE receptor signaling. They make this shift by moving away from β-adrenergic activation of the adenosine monophosphate (cAMP) pathway, which inhibits luteinizing hormone (LH) and female reproductive behaviors; and toward α1-adrenergic signaling mediated by phospholipase C (PLC), which facilitates LH surge and reproductive behaviors (Etgen et al., 1992; Etgen et al., 2001). In cycling females, β-adrenergic receptor binding is decreased in cortical membranes and there is less β-adrenergic receptor-stimulated cAMP compared to ovariectomized females and intact males (Wagner & Davies, 1980). There are estrogen-depleting conditions, such as menopause in females and ovariectomy in rats, that increase β1-adrenergic receptor expression; whereas estrogen treatment of striatal neurons down-regulates β1-adrenergic receptor action (Meitzen et al., 2013).
Taken together, these findings suggest that estrogens tend to decrease the expression and function of adrenergic receptors in the cortex and striatum; as well as downregulate postsynaptic adrenergic receptors, decreasing the ability of NE to affect descending structures. This could produce a state of high NE if its synthesis does not decrease when estrogen levels are reduced, or if adrenergic receptors become insensitive to the estrogen-induced decrease. Such effects could increase the risk of hyperarousal symptoms in women, especially during their reproductive years when estrogen levels fluctuate regularly (Angold & Worthman, 1993; Kessler et al., 1993; Kessler, 2003). All these findings reveal that the LC-NE system is regulated by estrogen and stress which may increase susceptibility to hyperarousal states in the female sex relative to the male sex, while it may also explain why symptomatology in some mental disorders decreases after menopause (Pearce et al., 1997; Ghazanfarpour et al., 2018).
NE reabsorption transporters (NET)
	High concentrations of NE in the LC can be detected by positron emission tomography (PET) studies, since this technique allows the observation of such concentrations using specific radioligands. Carbon 11 [11C] reboxetine derivatives make it possible to perform in vivo studies of NE transporters (NET) (Logan et al., 2005; Logan et al., 2007; Ding et al., 2003; Ding et al., 2005; Wilson et al., 2003). Being the most promising ligands to study the brain NET system (Ordway et al., 1997; National Center for Biotechnology Information, 2004-2013); as the highest brain concentrations of these derivatives are in midbrain regions, the thalamus, and the lowest concentrations are in the basal ganglia and occipital cortex matching with the known distribution of NET in the brain (Logan et al., 2007; Ding et al., 2003; Ding et al., 2005; Ghose et al., 2005; National Center for Biotechnology Information, 2004-2013). 
Several findings point to dysfunction of the LC-NE system in anxiety disorders, where altered ultrastructure of the LC-NE nucleus, decreased number of neurons, increased expression and sensitivity of α2-adrenoreceptor, and decreased NE reuptake transporters were reported in several post-mortem studies of individuals with anxiety disorders (Issidorides, 1990; Arango et al., 1996; Klimek et al., 1997; Baumann et al., 1999; Southwick et al., 1999; Bracha et al., 2005; Ordway et al., 2003). These data suggest that the LC-NE system may have been downregulated in an attempt to compensate for the lack of negative feedback necessary to reestablish the synergy between tonic and phasic modes of firing of LC-NE neurons by decreasing tonic activity (Howells et al., 2012). This would imply that lower NET density may be related to the development of mood and anxiety disorders (Morón et al., 2002; Liprando et al., 2004; Arnsten & Li, 2005; Miner et al., 2006), including this vulnerability to developing PTSD.
Conclusions
	PTSD is a disorder that is more frequent in females than in males, which has been associated with different brain structures in terms of volume and activity (hyper and hypo), showing differences between participants without pathology and those with other anxiety disorders. Differences were also found in the GC, with a chronic elevation of this hormone, modifying or exacerbating neuronal changes. In studies with rats and mice, higher corticosterone levels were observed in female rats than in males; and hippocampal neurons varied in size and complexity of dendrites, producing a greater activation of the emotional arousal circuit in the female sex. The female sex, having higher CRF expression, was found to have greater anxiety following stressful events; and CRF1 signaling may make neurons more sensitive to CRF and CRF1. As well as they also bound to G proteins on a larger scale than in the male sex, increasing the anxiety response to stressful events inappropriately. In turn, a decrease in NET availability was evidenced, which contributes to the genesis of an inappropriate stress response, eventually generating greater vulnerability to the development of mood and anxiety disorders.
These findings show that these differences may be attributable to dysregulation of the LC-NE system, because high CRF expression (associated with high estrogen levels) activates the release of noradrenergic neurons in the LC, generating an inappropriate activation of the stress response to stimuli that should be subthreshold. This means that it increases NE secretion and decreases its degradation, which may increase the risk of symptoms of hyperactivation of the stress response in women, especially during their reproductive years, when estrogen levels fluctuate regularly.
This gender disparity would postulate a biological vulnerability to stress in the female sex, thus also generating vulnerability in the development of psychiatric pathologies, such as depression, generalized anxiety disorder, bipolar disorder, borderline personality disorder, psychosis and substance abuse. 
However, there are multiple investigations that refer that this dysregulation of stress systems can be balanced with pharmacological treatment (Nemeroff et al., 1991; Owens et al., 1991; Banki et al., 1992; De Bellis et al, 1993; Raadsheer et al., 1994; Heuser et al., 1998; Baker et al., 1999; Gold & Chrousos, 2002; Sautter et al., 2003; Wang et al., 2008; Austin et al., 2003; Bissette et al., 2003; Ipser & Stein, 2012; Lopresti et al., 2019).
It is considered relevant to continue studying this dysregulation in humans, given that the vast majority of studies were conducted in rodents; as well as the involvement of other hormones and neurotransmitters that could be involved in the genesis of this type of problems (i.e. oxytocin and dopamine) (Winter & Jurek, 2019; Jawad et al., 2021), in order to generate action and prevention plans in the female population.
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